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Abstract

Building an effective adversarial attacker and
elaborating on countermeasures for adversar-
ial attacks for natural language processing
(NLP) have attracted a lot of research in re-
cent years. However, most of the existing ap-
proaches focus on classification problems. In
this paper, we investigate attacks and defenses
for structured prediction tasks in NLP. Besides
the difficulty of perturbing discrete words and
the sentence fluency problem faced by attack-
ers in any NLP tasks, there is a specific chal-
lenge to attackers of structured prediction mod-
els: the structured output of structured pre-
diction models is sensitive to small perturba-
tions in the input. To address these prob-
lems, we propose a novel and unified frame-
work that learns to attack a structured pre-
diction model using a sequence-to-sequence
model with feedbacks from multiple reference
models of the same structured prediction task.
Based on the proposed attack, we further rein-
force the victim model with adversarial train-
ing, making its prediction more robust and ac-
curate. We evaluate the proposed framework
in dependency parsing and part-of-speech tag-
ging. Automatic and human evaluations show
that our proposed framework succeeds in both
attacking state-of-the-art structured prediction
models and boosting them with adversarial
training.

1 Introduction

Adversarial examples, which contain perturbations
to the input of a model that elicit large changes
in the output, have been shown to be an effective
way of assessing the robustness of models in nat-
ural language processing (NLP) (Jia and Liang,
2017; Belinkov and Bisk, 2018; Hosseini et al.,
2017; Samanta and Mehta, 2017; Alzantot et al.,

*Equal contributions.
"Corresponding author.
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Figure 1: An example showing the challenges in attack-
ing a dependency parser using gradient-based methods.
A small perturbation to the sentence x changes one
word from “am” to “fires”. This change makes the per-
turbed example [ fires a writer ungrammatical. Even
if the perturbed example is “I fire a writer” that meets
the rules of grammar, the true output structure is still
different from the input sentence “I am a writer”. More
importantly, this true parse is unknown to the attacker,
which hinders the next update step.

2018; Ebrahimi et al., 2018; Michel et al., 2019;
Wang et al., 2019). Adversarial training, in which
models are trained on adversarial examples, has
also been shown to improve the accuracy and ro-
bustness of NLP models (Goodfellow et al., 2015;
Tramer et al., 2017; Yasunaga et al., 2018). So
far, most existing methods of generating adversar-
ial examples only work for classification tasks (Jia
and Liang, 2017; Wang et al., 2019) and are not
designed for structured prediction tasks. However,
since many structured prediction tasks such as part-
of-speech (POS) tagging and dependency parsing
are essential building blocks of many Al systems,
it is important to study adversarial attack (generat-
ing adversarial examples) and defense (adversarial
training) of structured prediction models.

There are multiple challenges that have to be
addressed in building an efficient and effective
attacker for structured prediction models in NLP.
Zhang et al. (2019a) pointed out two major prob-
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lems encountered by attackers of NLP tasks. First,
since words are discrete, making small disturbances
to words in the gradient direction is difficult. Sec-
ondly, there is no guarantee that the generated ad-
versarial examples are fluent. In addition to these
two problems, there is a unique challenge faced
by attackers of structured prediction tasks. While
small perturbations to images or even texts typi-
cally do not change their classification labels, small
perturbations to sentences in structured prediction
may very likely change the true output structures.
In other words, many structured prediction tasks
are very sensitive to small perturbations in the in-
put sentence. Consequently, almost all the existing
attacking methods are not directly applicable to
structured prediction. To illustrate this challenge,
we take adversarial attack of dependency parsing
as an example (Figure 1). We use the fast gradient
sign method (FGSM) (Goodfellow et al., 2015) as
the attack method, which is a classic gradient-based
attacker that perturbs the input by minimizing the
likelihood of the true output. When applied to NLP
tasks (Miyato et al., 2017), FGSM perturbs the em-
beddings of the words in the input sentence and
then replaces individual words based on the new
embeddings. However, there is no guarantee that
the new sentence has the same parse tree as the
original sentence. Once the true output parse tree
becomes unknown, subsequent updates become im-
possible in FGSM, resulting in perturbation that
might be insufficiently adversarial. In Figure 1,
after just one step of perturbation, the sentence in-
deed has a different parse tree that is unknown to
the attacker.

To address the aforementioned problems, we pro-
pose to attack structured prediction models with
sequence-to-sequence (seq2seq) sentence genera-
tors. Before attack, the seq2seq generator is trained
by reinforcement learning based on a novelty de-
signed reward function that evaluates the output
of the victim structured prediction model against
an ensemble of multiple reference models of the
same structured prediction task. During attack,
the seq2seq generator is simply applied to input
sentences to produce adversarial examples. Our
framework has the following features.

e Our proposed attacker is a black-box attacker
that does not need to know the internal de-
tails of the target model (such as the model
structure, the hyper-parameters, the training
strategy, the training dataset, and gradients

over each layer). This ensures that our frame-
work (including attack and defense) can be
applied to almost any structured prediction
models.

e In contrast to previous black-box attackers,
our attacker is an online attacker. Once the
seq2seq sentence generator is trained, it can
generate adversarial examples directly from
original sentences during attacks without any
optimization procedure and also without the
need to access the victim model. This signifi-
cantly increases the efficiency of the attack.

o Most existing methods perform word or char-
acter level manipulations and hence cannot
change the sentence length. We use a seq2seq
generator to modify the whole sentence with-
out this limitation.

e Our generator can utilize some recent pre-
trained language models (e.g., BERT (Devlin
et al., 2019), GPT-2 (Radford et al., 2019)) to
improve quality of adversarial examples.

We evaluate our framework on the dependency
parsing task and the POS tagging task. Both
automatic and human evaluations show that our
method outperforms previous approaches in attack-
ing state-of-the-art structured prediction models
as well as boosting these models with adversarial
training for better accuracy and robustness. The
code and the trained model can be found at https:
//github.com/WinnieHAN/structure_adv.

2 Background
2.1 Structured Prediction

Structured prediction in NLP aims to predict out-
put variables that are mutually dependent or con-
strained given an input sentence. We represent the
training data with N samples as D = {x(7), y() .
j=1,..., N}, where x() is the j-th sentence and
y ) is the corresponding structure. The set of all
x9) is X. For each x with length n, it can be writ-
ten as a sequence of tokens {x; : ¢ = 1,...,n}. We
also define v to represent the concatenation of all
the word vectors in sentence X.

A structured prediction model predicts the output
y given an input sentence x by maximizing the log
conditional probability:

log P ;0
arg max log (ylx; ©)
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where 7 is the set of all possible outputs and © is
the set of parameters.

We train the model by minimizing the following
loss:

L(©) = —% >

(x(])7y(J))€D

log p(y(j) |X(j); 0)

2.2 Word-level Adversarial Attack

Goodfellow et al. (2015) proposed the fast gradient
sign method (FGSM) in the image processing field,
which uses the direction of the gradient to update
image pixels and generate adversarial examples.
Then Miyato et al. (2017) applied this approach
to add perturbations in the word embedding space,
though their approach cannot generate adversar-
ial text examples. In order to solve the mapping
problem from a modified word vector to a word,
word level manipulation is used to replace origi-
nal words (Papernot et al., 2016). In addition to
the replacement manipulation, Samanta and Mehta
(2017) introduced two new modification strategies:
removal and addition.

2.3 Word-level Adversarial Attack for
Structured Prediction

The gradient of the negative log likelihood with
respect to the input in a structured prediction model
can be leveraged to find adversarial examples. The
original input sentence x is manipulated by adding
or subtracting a small adversarial perturbation r
to the vector v. Adding r in the direction of the
gradient means that the sentence is modified to
decrease the log likelihood so that the model is less
likely to predict the correct output. We use X to
represent x with perturbation.

The following formula describes the adversarial
example:

X = search(x,r) = search(v,r)

where we use v to represent the concatenation of
all the word vectors in sentence x. search is a
searching approach to find an adversarial exam-
ple X according to perturbed vector v 4+ r and r
is calculated by maximizing the loss function as
follows.
r =arg max {—log P(y|x+r;0)}
r)||r|[<e

where € is a hyper-parameter to control the scale of
the perturbation.

Evaluation Criterion
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Figure 2: Our framework illustrated on the dependency
parsing task. It consists of three parts: a seq2seq gen-
erator, an evaluation module (including the reference
Parser B, the reference Parser C and the evaluation cri-
teria), and the

It is intractable to exactly solve the problem, so
an approximate approach is proposed to compute r
as follows:

€g
-
gl

g =sign(Vy log P(y|v; ©))

To generate natural and legible adversarial sen-
tences, we search in the word embedding space
and replace the original word with a word that is
closest to the perturbed word vector. However,
as discussed in section 1, this approach can only
generate perturbed examples using one perturba-
tion step for structured prediction. Moreover, this
model cannot guarantee quality (e.g., fluency) of
the generating sentences.

3 Sentence-level Adversarial Attack and
Defense

We aim to mislead a structured prediction model by
generating adversarial examples X from the orig-
inal examples x using a seq2seq generator. We
train the generator using reinforcement learning
following Williams (1992). The reward function
for reinforcement learning evaluates whether the
generated sentence could induce an incorrect out-
put from the victim model, and the evaluation is
facilitated by two reference models. In addition,
the reward function also evaluates the quality of the
generated sentence. Figure 2 illustrates the overall
architecture of our proposed model, which mainly
consists of three parts: a generator, an evaluation
module, and the victim model. We use dependency
parsing as our example structured prediction task
and name the victim parser as parser A and the
reference parsers as Parsers B and C.
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In contrast to the word-level attackers described
in section 2.3, our proposed method aims to do
sentence-level attacks that are capable of generat-
ing a sentence of a different length and structure
instead of merely making local word changes.

3.1 Evaluation Criterion for Structured
Outputs

Since the structured output is very sensitive to per-
turbation of the input, the parse of the original sen-
tence x cannot be treated as the ground truth of the
generated adversarial sentence X. Without know-
ing the new ground truth, we would not know if the
adversarial sentence can indeed mislead parser A
to produce an incorrect prediction. Thus we make
use of two reference parsers B and C to evaluate
the prediction of parser A and help guide the gener-
ation of truly adversarial examples. Intuitively, if B
and C produce the same parse tree, then it is more
likely to be correct and can be used as ground-truth
to evaluate parser A.

Given a generated sentence X, if the predicted
parse tree y;f{1 from parser A is greatly different
from the predicted trees yf and yg from parsers
B and C, while y? and y§ agree with each other,
then we think X is a good adversarial example of
parser A. The criterion is defined as follows:

sp(X) = — (v, vE) — f(y5.¥5) + F(yE.¥%)
()

where f(y,y*) is a symmetric function that evalu-
ates the difference between two parse trees y and
y*. A higher value of s,(X) means X is more ad-
versarial.

The primary criterion for selecting parsers B
and C is their parsing accuracy. As we defined
in Equation 1, the consensus prediction of parsers
B and C is regarded as ground truth, no matter
whether the prediction is actually right or wrong.
Thus parsers B and C should have high accuracy
and also different inductive biases so that they are
unlikely to make the same mistake. In addition, B
and C should not be too similar to parser A, because
otherwise the first two terms in Equation 1 would
become hard to optimize.

3.2 Evaluation Criteria for Sentence Quality
We consider two aspects of the sentence quality as
follows:

e Fluency: Inspired by Holtzman et al. (2018);
Xu et al. (2018); Pang et al. (2020), we use

perplexity on GPT-2 (Radford et al., 2019),
a large Transformer language model trained
on massive texts, to evaluate the fluency of
the generated sentences. We use the negative
perplexity as a reward in the learning process.

sp(%) = —PPL(X)

e Meaning Preservation: Adversarial examples
that differ too much from the original sen-
tences are less effective in attacks because
humans can easily identify them. We use
BERTScore (Zhang et al., 2019b) as another
reward in learning to evaluate the similarity
between two sentences at the meaning level.
We choose to use BERTScore because it cor-
relates better with human judgments than tra-
ditional measures such as BLEU (Papineni
et al., 2002).

sm(x,X) = BERT Score(x,X)

By maximizing these criteria, we hope to make
the adversarial examples look more like human
generated sentences and not differ too much from
the original sentences in meaning.

3.3 Sentence Generator

We propose to use a seq2seq model (Wang et al.,
2016) as the adversarial sentence generator, which
has been widely used in machine translation, dia-
logue and many other areas. The seq2seq model
specifies P(X|x; ©), the conditional probability of
generating an adversarial sentence X given an in-
put sentence x. We train the model by reinforce-
ment learning guided by our aforementioned crite-
ria. The objective function is the expected reward
based on the sentences from the training corpus X,

J(©) = Z By px|x;0)5(%,X)
xeX

The reward s(x, X) is composed of three parts.
5(x,X) = asp(X) + Bsf(X) + vsm(x,X)  (2)

where «, 3,7 are tunable hyper-parameters that
control the balance between the three parts. We op-
timize the objective function with the REINFORCE
algorithm (Williams, 1992).

To further encourage meaning preservation be-
tween x and X, we also pretrain the seq2seq model
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as a denoising auto-encoder before reinforcement
learning. Specifically, during pretraining we add
noise to the hidden states of encoder and train the
decoder to recover the input sentence. We employ
the masking noise method that masks each word of
the input sentence by a fixed probability and trains
the denoising autoencoder to fill in these “blanks”
(Vincent et al., 2008).

3.4 Defense against Adversarial Attack

Following Goodfellow et al. (2015), we use adver-
sarial training to withstand attacks. More specif-
ically, we enhance the victim model by injecting
adversarial examples into the training data and re-
training the model with the mixed data.

4 Experiments on Dependency Parsing

We first perform experiments on dependency pars-
ing, a well-known structured prediction task.

4.1 Data

Our model does not need labeled data for train-
ing but we need a victim parser and two reference
parsers in our experiments. We learn these parsers
on an English dataset: Penn Treebank 3.0 (PTB,
Marcus et al. (1994)). We also use the same data
for training and evaluating our model.

4.2 Parser Selection

We choose the Deep Biaffine parser (Dozat and
Manning (2017)), one of the state-of-the-art graph-
based parsers, as the victim parser A. For the ref-
erence parsers, we choose two other well-known
dependency parsers:

- Parser B: StackPTR from Ma et al. (2018)

- Parser C: BiST from Kiperwasser and Gold-
berg (2016)

The three parsers are trained with PTB. All the
hyper-parameters of these parsers are the same as
reported in their papers.

4.3 Evaluation Metrics

Our goal is to generate fluent sentences that are mis-
predicted by the victim model. Thus, we evaluate
the adversarial examples produced by our model
from 2 aspects: generation fluency and attacking
efficiency (6 metrics).

Generation Fluency We use the perplexity on
GPT-2 to evaluate the fluency of the generated sen-
tences.

Attacking efficiency We evaluate the attacking
success rates at the token level and sentence level.
The token level attacking success rate is the per-
centage of words in the generated adversarial ex-
amples that are assigned the wrong head without
considering the labels of the dependence type. It is
also known as unlabeled attachment score (UAS).
Sentence-level attacking success rate is the per-
centage of mispredicted sentences in the generated
adversarial examples. Due the lack of golden parse
trees of generated sentences, here we leverage the
parses predicted by Parsers B and C as ground
truth. The token level and sentence level each has
three metrics: predictions of B as ground truth,
predictions of C as ground truth, and consensus
predictions of B and C as ground truth (discarding
the sentences on which they disagree).

Human evaluation We conduct human evalua-
tion of the fluency and attacking efficiency. All the
volunteers have a background of linguistic study
and are proficient in English. We further train the
volunteers with the annotated English PTB tree-
bank. From the adversarial examples generated
by our method, we randomly sample 50 examples.
During labeling, we ask two of them to label the
sentences and the third skilled volunteers to double-
check the evaluation results. For fluency, we ask
them to rate the fluency of a sentence by an integer
from 1 to 5. 5 indicates a sentence is fluent and
has no grammatical errors. 1 indicates a sentence
is full of grammatical errors and meaningless. For
attacking efficiency, we ask them to manually an-
notate erroneous dependency edges and calculate
the error rate in the same way as in automatic eval-
uation. The predictions of the Parsers B and C are
given for reference.

4.4 Experimental Setup

We take the word-level approach in section 2.3 as
our baseline, which uses a one-step update. Intu-
itively, this approach maintains the length of sen-
tences and perturbs sentences by word-level re-
placement.

For our seq2seq generator, we use an attention-
based three layers of BiLSTM with hidden vector
dimension 1024. First, we pretrain the seq2seq gen-
erator for 3 epochs with unlabeled sentences from
the PTB training set. The objective function for
pretraining is negative conditional log likelihood.
Then we train the seq2seq generator using rein-
forcement learning with hyper-parameter o = 1,
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Generation Fluency | Token level Attacking Success Rate | Sentence level Attacking Success Rate
(Perplexity |) Parser B | Parser C | Parsers B&C | Parser B | Parser C | Parsers B&C
Origin 156.02 32 3.6 4.6 34.2 353 40.7
Baseline 217.02 3.8 4.2 6.5 55.6 57.5 71.7
Ours 174.16 13.9 19.2 24.1 87.4 86.5 89.0

Table 1: Experimental results on dependency parsing based on automatic evaluation. “Origin” shows the results of
original sentences in the PTB test set. Lower perplexity is better.

Generation | Attacking Success Rate
Fluency 1t | Token Sentence
Baseline 321 10.8 64
Ours 3.84 18.3 72

Table 2: Experimental results on dependency parsing
based on human evaluation. Higher is better.

Prediction
/—»/_A,/ - » :\\

ROOT But investorssay they re interested
Ground Truth

= VN

ROOT But investors say they re interested

Source Sentence
But fund managers say they 're ready .

Figure 3: Case study of an adversarial example for de-
pendency parsing task. The mispredicted dependencies
of victim parser A are highlighted by dotted lines.

6 = 0.001, v = 100. Adam (Kingma and Ba,
2014) is used to optimize the parameters with the
learning rate is 2e-5. The minibatch size during
reinforcement learning is 16. A detailed descrip-
tion of hyper-parameter settings can be found in
Appendix A.

4.5 Experimental Results

Table 1 shows the automatic evaluation results. The
attacking success rate improvement of our method
over the baseline reflects the effectiveness of our
reinforcement learning strategy. Particularly, our
method improves the token level and sentence level
attacking success rate 17.5% and 17.3% on Parsers
B&C, respectively. It can also be seen that our pro-
posed method maintains good fluency while mak-
ing successful attacks. Human evaluation shown
in Table 2 is consistent with automatic evaluation:
our proposed method is significantly better than
the baseline model at both generation fluency and
attacking success rate. For better comparison, we
ask volunteers to label the fluency score of the orig-
inal sentences in PTB and obtain 4.64. We show
an adversarial example in Figure 3.

UAS

W/O Adv Train 95.42
Baseline 95.54

. BLLIP-BC | 95.51

Adv Train e 1 95.46
Ours 95.63

Table 3: Adversarial Training on different datasets for
dependency parsing. Adv Train: adversarial training.

95.62

95.6
95.58
95.56
95.54
95.52

95.5
95.48
95.46

95.52 95.518

BLLIP-BC BLLIP-ABC Ours

Figure 4: Average results of five time retrain using dif-
ferent datasets.

4.6 Adversarial Training

We then conduct experiments on adversarial train-
ing and summarize the results in Table 3. We add
2000 adversarial examples to the original training
data and retrain the Biaffine parser!. We use the
predicted parser Tree from Parsers B and C as the
ground truth for these adversarial examples. If
the parse trees from Parsers B and C are not the
same, we drop the sentence. In addition to W/O Adv
Train (result without adversarial training) and Base-
line (retraining with adversarial examples produced
by the word-level approach), we also experiment
with the following two baseline methods of collect-
ing 2000 additional training samples the BLLIP

'The candidate sentences are generated by the seq2seq
generator using sentences in the training dataset as input. Then
we drop the sentences that do not meet the criterion: reference
parsers B and C predict the same parse trees that are different
from the predictions of parser A (namely, the victim parser).
Finally, we select the first 2000 sentences from the remaining
2044 sentences as the adversarial examples.
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Generation Fluency | Token level Attacking Success Rate | Sentence level Attacking Success Rate
(Perplexity |) Tagger B | Tagger C | Tagger B&C | Tagger B | Tagger C Tagger B&C
Origin 156.02 1.9 2.1 32 30.6 355 45.7
Baseline 354.24 3.8 4.2 6.5 55.6 57.5 71.6
Ours 142.59 9.2 7.3 14.5 78.1 73.3 89.0

Table 4: Experimental results on POS tagging based on automatic evaluation. “Origin” shows the results of the

original sentences. Lower perplexity is better.

Generation | Attacking Success Rate
Fluency 1t | Token Sentence
Baseline 3.98 1.8 16
Ours 3.88 8.1 52

Table 5: Experimental results on POS tagging based on
human evaluation. Higher means better.

dataset?:

- BLLIP-BC: Sampling sentences on which
Parsers B and C predict the same parse trees.

- BLLIP-ABC: Sampling sentences on which
Parsers B and C predict the same parse trees
that are different from the predictions of
Parser A.

We use the predicted parse trees from Parsers B
and C as the ground truth for these two kinds of
baselines. It can be seen that adversarial training,
with adversarial examples leads to the largest per-
formance gain over the “no adversarial training”
baseline.

Although Table 3 shows that fine-tuning the vic-
tim parser A on our adversarial samples achieves
better performance, the improvement is small. To
investigate whether the improvement is significant
or not, we retrain the parser A for five times with
different random seeds. We also rerun the BLLIP-
BC and BLLIP-ABC baselines (including the sam-
pling step) for five times with different random
seeds. The learning rate is 5e-4. After training for
50 epochs, the average results are shown in Fig-
ure 4. It shows that our method outperforms the
two baselines. We also perform Student’s t-test:

- BLLIP-BC and Ours: t-value is -2.77 and p-
value is 0.024.

- BLLIP-ABC and Ours: t-value is -3.39 and
p-value is 0.010.

*Brown Laboratory for Linguistic Information Processing
(BLLIP) 1987-89 WSJ Corpus Release 1. We choose the
BLLIP corpus because it is collected from the same news
article source as the WSJ corpus.

Both p-values are less than 0.05. That means the
advantage of our method is statistically significant.
We also perform human evaluation on the re-
trained parser. The token level attacking success
rate drops 1.3 points from 18.3 to 17.0, and the sen-
tence level attacking success rate reduces from 72
to 70. We perform significance tests on the attack-
ing success rate. The p-value is calculated by using
the one-tailed sign test with bootstrap resampling
on 50 samples following Chollampatt, Wang, and
Ng (2019). We compare the attacking success rate
with and without retraining. The p-values (5.42e-
20 at the token level and 3.39e-21 at the sentence
level) show that the improvement is significant.

5 Experiments on POS Tagging

5.1 Experimental Setup

In this section, we apply our method to the part-of-
speech tagging task using the tagger from Ma and
Hovy (2016) as the victim model. For the reference
taggers, we choose two state-of-the-art taggers:
Stanford POS tagger from Toutanova et al. (2003)
and Senna tagger from Collobert et al. (2011). All
the hyper-parameters of the three taggers are the
same as reported in their papers. We conduct the
experiments on the PTB dataset.

Similar to dependency parsing, the word level
approach in section 2.3 is the baseline. For the ad-
versarial example generator, we use the same struc-
ture and pretrain strategy as Section 4.4, except
that the dimension of hidden state is set to 512. We
train the sentence generator using reinforcement
learning with hyper-parameter « = 1, 5 = 0.001,
v = 30. Adam(Kingma and Ba, 2014) is used to
optimize the parameters with learning rate 5e-4.
The minibatch size during reinforcement learning
is 64. A detailed description of hyper-parameter
settings can be found in Appendix B. We employ
the same set of evaluation metrics as in section 4.3.

5.2 Experimental Results

We perform automatic evaluation over all the sam-
ples generated from the test dataset. As shown in
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Prediction| NNP NNS VBD VBG
Ground Truth| CC NNS VBD VBG
Generated Sentence | But

stocks  went falling

Original Sentence | Stocks kept falling .
Prediction| NNP NN VBD
Ground Truth | DT NN VBD

Generated Sentence | The

market  went

Original Sentence | Market crumbled .

Figure 5: Case study of an adversarial example for POS
tagging task. The mispredicted POS tags of victim tag-
ger A are highlighted with underlines.

Table 4, attacking success rate and fluency of our
proposed method are both above those of the base-
line, which indicates the effectiveness of our pro-
posed method. Particularly, our method improves
the token level and sentence level attacking success
rate 8.0% and 17.3%, respectively.

Similar to the dependency parsing task, Table 5
shows the result of human evaluation of 50 samples.
According to human evaluation, the fluency of sen-
tences generated by the two methods is similar, but
the attacking success rate of our method is signifi-
cantly higher than the baseline. Two example are
shown in Figure 5.

We also conduct experiments on adversarial
training with 1000 additional samples produced
by our method. After retraining, the accuracy of
Tagger A improves 0.13 point from 97.55 to 97.68
on PTB the test set. Similar to dependency pars-
ing, we perform t-test to measure the statistical sig-
nificance of the advantage of our method in POS
tagging. The resulting p-value is 0.027.

6 Analysis

6.1 Selecting Reference Model

We mention in the Section 3.1 that the victim model
and the two reference model should differ from
each other as much as possible. In our previous ex-
periments in Section 4 , we use three different types
of parsers as the victim parser (Deep Biaffine) and
reference parsers (StackPtr and BiST). Here we in-
vestigate the impact of making them similar. First,
we make the two reference parsers similar to the
victim parser, by training two Deep Biaffine parsers
with different random seeds. We call this AllSame.
Second, we make the two reference parsers similar
to each other but different from the victim parser,
by training two StackPtr parsers with different ran-
dom seeds. We call this EvalSame.

Table 7 shows that AllSame tends to generate

fluent sentences but the sentences are less adver-
sarial. This can be explained by the fact that the
similarity between the parsers make the first term
of Equation 2 very small and the reward function
is dominated by the two sentence quality terms.
EvalSame can be seen to produce slightly higher
token level attacking success rate but significantly
lower generation fluency. Compared with AllSame
and EvalSame, our standard method of using two
different parsers as the reference models can reach
a better attacking success rate, while keeping the
sentences relatively fluent.

6.2 Applicability Analysis

We repeat our experiment of dependency parsing
following the setup of Table 1 except for the choice
of the victim parser and reference parsers. We use
StackPTR as the victim model while the Deep Bi-
affine parser and BiST as Parser B and Parser C.
Table 6 shows the automatic evaluation results. The
results show similar trends to those in Table 1, sug-
gesting that our approach is effective to different
choices of the victim parser and reference parsers.

7 Related Work

Attack Design on Un-structured Prediction
Model Following the success in the image pro-
cessing area (Goodfellow et al., 2015), the idea of
adding continuous perturbations to inputs has been
applied to tasks in NLP (Sato et al., 2018; Gong
et al., 2018). In order to solve the mapping prob-
lem from the modified word vector to the word,
Papernot et al. (2016) built a special dictionary to
select words to replace the original words. In ad-
dition to replacement manipulation, Samanta and
Mehta (2017) introduced three modification strate-
gies: removal and addition. Michel et al. (2019)
leveraged atomic character-level operation. Some
attack strategies to generate adversarial examples
have been proposed in the sentence level setting.
Zhao et al. (2018) searched adversarial examples in
the continuous vector space and then used genera-
tive adversarial networks (Goodfellow et al., 2014)
to map the fixed-length vectors to data instances.
However, these attackers are only designed for clas-
sification tasks or generation tasks and can not be
easily applied to structured prediction systems.

Attack Design on Structured Prediction Model
There is also some prior work on attacking struc-
tured prediction models. Cisse et al. (2017) pro-
posed to attack structured prediction models in the
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Generation Fluency | Token level Attacking Success Rate | Sentence level Attacking Success Rate
(Perplexity |) Parser B | Parser C | Parsers B&C | Parser B | Parser C | Parsers B&C
Baseline 377.36 4.5 15.9 17.5 40.7 74.5 74.90
Ours 244.69 19.6 23.3 26.2 70.8 77.2 80.1

Table 6: Experimental results on dependency parsing based on automatic evaluation with StackPTR as the victim
model while the Deep Biaffine parser and BiST as Parser B and Parser C.

Generation | Attacking Success Rate
Fluency 1 | Token Sentence
AllSame 4.19 11.4 64
EvalSame 3.54 13.6 62
Ours 3.84 18.3 72

Table 7: Results of human evaluation on different set-
tings of the reference parsers. Higher is better.

image processing field, such as those for pose es-
timation and semantic segmentation. In a sepa-
rate line of work, Ziigner and Giinnemann (2019)
proposed to attack graph neural network for node
classification.

8 Conclusion

Building an effective adversarial attacker for struc-
tured prediction models is challenging. The biggest
challenge is the sensitivity of the output to small
perturbations in the input in structured prediction.
In this paper, we propose a novel framework to
attack structured prediction models in NLP. Our
framework consists of a structured-output evalu-
ation criterion based on reference models and a
seq2seq sentence generator. We propose to uti-
lize reinforcement learning to train the sentence
generator based on the evaluation criterion. Our at-
tack experiments on dependency parsing and POS
tagging show that our proposed framework can
produce high-quality sentences that can effectively
attack current state-of-the-art models. Our defense
experiments show that adversarial training using
the adversarial samples generated by our model
can be used to improve the original model. We
believe that our framework is general and can be
applied to many other structured prediction tasks in
NLP, such as neural machine translation, semantic
parsing and so on.
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A Dependency Parsing Experiment
Details

During pretraining, the Deep Biaffine parser and
the StackPtr parser is trained by Pytorch 0.4.1, the
BiST parser is trained by Dynet.
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Embedding sskip

Embedding dim 100
POS Embedding dim 25
Word Embedding dropout  0.25
BiLSTM size 125
BiLSTM depth 2
MLP size 100
Batch size 32
Window 3
Optimizer Adam
Learning rate le-1

Table 10: Hyper-parameters of pretraining the BiST
parser.

Embedding sskip
Embedding dim 100
Embedding dropout  0.33
BiLSTM size 512
BiLSTM depth 3
BiLSTM dropout 0.33
Arc MLP size 512
Arc MLP dropout 0.33
Label MLP size 128
Label MLP dropout (.33
Batch size 32
Optimizer Adam

Learning rate

le-3

Table 8: Hyper-parameters of pretraining the Deep Bi-
affine parser. Here sskip is Structured SkipGram (Ling
et al., 2015).

Embedding sskip
Embedding dim 100
Embedding dropout 0.33
BiLSTM size 512
BiLSTM depth 3
BiLLSTM dropout 0.33
Arc MLP size 512
Arc MLP dropout 0.33
Label MLP size 128
Label MLP dropout 0.33
Batch size 32
Optimizer Adam
Learning rate le-3

Table 9: Hyper-parameters of pretraining the StackPtr



Word Embedding

Word Embedding dim

BiLSTM depth
BiLSTM dim

Hidden state dropout

Optimizer
Learning rate
Epoch

sskip
100

3
1024
0.5
Adam
le-3

3

Table 11: Hyper-parameters of pretraining our seq2seq
sentence generator for dependency parsing.

« 1

I3 0.001
¥ 100
UNK weight 500
Optimizer Adam
Learning rate  2e-5
Epoch 3

Table 12: Hyper-parameter of reinforcement training
seq2seq sentence generator. UNK weight is a reward
used to control the rate of UNK token. About 6 hours
per epoch.

Retraining the Deep Biaffine parser We re-
train the parser, all its hyper-parameter is same
as the Table 8 but learning rate is 5e-4.

B POS Tagging Experiment Details

the BILSTM-CNN-CRF Tagger

Embedding sskip
Embedding dim 100
Embedding dropout  0.33
BiLSTM size 256
BiLSTM depth 1
Label MLP size 256
Label MLP dropout 0.5
Bigram True
Batch size 16
Optimizer Adam
Learning rate le-3

Table 13: Hyper-parameters during pretraining the
BiLSTM-CNN-CRF Tagger.

Reference Tagger:

- Stanford POS tagger:
http://nlp.stanford.edu/software/
stanford-postagger-2015-04-20.z1ip

- Senna tagger:
http://ronan.collobert.com/senna/

senna-v3.0.tgz

During pretraining the seq2seq sentence gener-
ator, all hyper-parameters are same with Table 11
but BiLSTM dim is 512.

Q 1

B 0.001
o 30
UNK weight 0
Optimizer Adam
Learning rate  5e-5
Epoch 3

Table 14: Hyper-parameter of reinforcement training
seq2seq sentence generator. About 22 hours per epoch.

Retraining the BIiLSTM-CNN-CRF Tagger
We retrain the parser, all its hyper-parameter is
same as the Table 13 but learning rate is le-4.

C Hyper-Parameter Search

The criterion used to select all the hyper-parameters
is the performance on the development data. We
mainly tune the hyper-parameters of the text gener-
ator. For example, we choose the dimension of the
hidden layer from 20 values in the range of 32 to
2048.
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